Adaptive reduced basis finite element heterogeneous multiscale method

نویسندگان

  • Assyr Abdulle
  • Yun Bai
چکیده

An adaptive reduced basis finite element heterogeneous multiscale method (RB-FE-HMM) is proposed for elliptic problems with multiple scales. The multiscale method is based on the RB-FE-HMM introduced in [A. Abdulle and Y. Bai, J. Comput. Phys, 2012, in press]. It couples a macroscopic solver with effective data recovered from the solution of micro problems solved on sampling domains. Unlike classical numerical homogenization methods, the micro problems are computed in a finite dimensional space spanned by a small number of accurately computed representative micro solutions (the reduced basis) obtained by a greedy algorithm in an offline stage. In this paper we present a residual-based a posteriori error analysis in the energy norm as well as an a posteriori error analysis in quantities of interest. For both type of adaptive strategies, rigorous a posteriori error estimates are derived and corresponding error estimators are proposed. In contrast to the adaptive finite element heterogeneous multiscale method (FE-HMM), there is no need to adapt the micro mesh simultaneously to the macroscopic mesh refinement. Up to an offline preliminary stage, the RB-FE-HMM has the same computational complexity as a standard adaptive FEM for the effective problem. Two and three dimensional numerical experiments confirm the efficiency of the RB-FE-HMM and illustrate the improvements compared to the adaptive FE-HMM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A reduced basis finite element heterogeneous multiscale method for Stokes flow in porous media

A reduced basis Darcy-Stokes finite element heterogeneous multiscale method (RBDS-FE-HMM) is proposed for the Stokes problem in porous media. The multiscale method is based on the Darcy-Stokes finite element heterogeneous multiscale method (DS-FE-HMM) introduced in [A. Abdulle, O. Budáč, Multiscale Model. Simul. 13 (2015)] that couples a Darcy equation solved on a macroscopic mesh, with missing...

متن کامل

Contents 1 Schedule 4 2

In this talk we will present recent developments in the design and analysis of numerical homogenization methods. Numerical methods for linear and nonlinear partial differential equations that combine multiscale methods with reduced order modeling techniques such as the reduced basis method will be discussed. The talk is based upon a series of joint works with various collaborators[1,2,3,4,5]. [...

متن کامل

Reduced basis finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems

A reduced basis finite element heterogeneous multiscale method (RB-FE-HMM) for a class of nonlinear homogenization elliptic problems of nonmonotone type is introduced. In this approach, the solutions of the micro problems needed to estimate the macroscopic data of the homogenized problem are selected by a Greedy algorithm and computed in an offline stage. It is shown that the use of reduced bas...

متن کامل

Reduced order modeling techniques for numerical homogenization methods applied to linear and nonlinear multiscale problems

The characteristic of effective properties of physical processes in heterogeneous media is a basic modeling and computational problem for many applications. As standard numerical discretization of such multiscale problems (e.g. with classical finite element method (FEM)) is often computationally prohibitive, there is a need for a novel computational algorithm able to capture the effective behav...

متن کامل

An adaptive local-global multiscale finite volume element method for two-phase flow simulations

Multiscale solution methods are currently under active investigation for the simulation of subsurface flow in heterogeneous formations. These procedures capture the effects of fine scale permeability variations through the calculation of specialized coarse scale basis functions. Most of the multiscale techniques presented to date employ localization approximations in the calculation of these ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012